Bonjour à tous, voici ma tentative de prototype d'un 'audiophile Ethernet Switch' qui est presque terminé. Alors qu'au départ je n'y croyais pas, la lecture a révélé certaines parties de la conception d'un Switch qui peuvent effectivement bénéficier d'améliorations. D'autres n'avaient aucun sens. J'ai incorporé celles qui avaient un sens dans une conception de Switch industriel que j'avais déjà. Désolé pour le mauvais français, il est traduit.
Sans citer d'autres interrupteurs, le mien suit une approche différente. Il semble que l'on insiste beaucoup sur l'isolation des signaux, mais ce qui n'est pas mentionné dans le discours marketing, c'est que cela se fait au prix d'une augmentation de la gigue. Sans citer d'autres conceptions, la mienne suit une approche différente. Il semble que l'on insiste beaucoup sur l'isolation des signaux, mais ce qui n'est pas mentionné dans le discours marketing, c'est que cela se fait au prix d'une augmentation de la gigue. J'ai décidé de chercher plutôt à minimiser toutes les sources d'interférences internes et à garder les alimentations et les horloges aussi pures et exemptes de bruit que possible, et à limiter la température aussi près que possible de la température ambiante où tous les circuits sont à leur point de fonctionnement optimal. J'ai également porté une attention quasi fanatique à l'emplacement des composants et au routage des signaux afin d'optimiser l'intégrité des signaux et la diaphonie.
L'isolation est en partie assurée par l'utilisation de transformateurs discrets (qui non seulement prennent beaucoup de place sur la carte mais coûtent aussi beaucoup plus cher) et peut être améliorée par une gestion intelligente de l'alimentation et du câblage.
Voici quelques-unes des principales caractéristiques :
- Un circuit intégré de commutation Ethernet Gigabit d'entreprise de Marvell. Celui-ci présente des capacités environnementales étendues et des émetteurs-récepteurs de haute qualité. PHY externe pour un port supplémentaire avec une liaison MAC RGMII.
- Transformateurs Ethernet discrets pour une meilleure isolation et moins de couplage de bruit parasite.
- Circuit imprimé multicouche pour exploiter la capacité du plan d'alimentation en faisant en sorte que le plan d'alimentation soit un condensateur RF.
- Horloge Crystek de haute précision et tampon de sortie d'horloge. Cela réduit la pression sur le circuit de récupération d'horloge en donnant moins de gigue.
- Cage de blindage EMI pour le commutateur Ethernet lui-même.
- Le commutateur est délibérément non géré pour réduire le bruit du processeur de contrôle, mais un MCU a été inclus pour deux fonctions : Force 100MBps et Disable Port. La première consiste à limiter la vitesse de la liaison à 100Mbps, ce qui réduit les vitesses d'horloge de 5x et donc les EMI. La seconde consiste à désactiver complètement les ports inutilisés, pour réduire une fois de plus les émissions et la consommation d'énergie. Il existe également un moyen d'éteindre les DEL Ethernet pour réduire les émissions de bruit puisque les DEL sont situées à la sortie. Le MCU ne communique avec le commutateur que pendant la mise sous tension, puis se met en veille pour réduire les interférences.
- Régulateurs linéaires pour tous les rails de tension, à l'exception de la tension du cœur du commutateur, qui a bénéficié d'un régulateur à commutation à double filtre. Régulateurs dédiés à faible bruit pour l'alimentation numérique générale, le rail analogique 1 du commutateur, le rail analogique 2 du commutateur, la PLL du commutateur, l'horloge, l'alimentation du MCU. Découplage avec plusieurs gammes de tantale céramique et polymère.
- Régulateur linéaire discret intégré pour le filtrage du 12V entrant de la prise barillet. Cela fait une très grande différence et permet de moins dépendre de la qualité de l'alimentation principale de 12V. Il a cependant besoin d'un dissipateur thermique important pour dissiper environ 5W sans chauffer l'électronique.
- De taille compacte 100x100mm, il peut être utilisé dans des profilés du commerce avec des nervures de connexion de masse sur le côté et un dissipateur thermique à l'avant pour le régulateur discret, mais je pense plutôt utiliser un chasiss en acier plié sur mesure.
- Le panneau avant basique indique la mise sous tension et tout est OK avec une LED bicolore. Le panneau arrière comporte les cinq prises Ethernet avec lien intégré, vitesse et LED d'activité (si activé) et une prise barillet 12V DC.
- 2 connexions externes SMA 50Ohm pour l'asservissement de l'horloge du commutateur à d'autres appareils en utilisant LVPECL. Dans mon cas, il sera connecté à un PCIe NIC personnalisé que je suis en train de développer. Je n'ai pas inclus les options d'entrée habituelles de 10MHz puisque je n'ai pas l'intention d'utiliser des horloges maîtresses externes.
Le but principal était de voir ce qui peut être fait et d'en construire un pour moi et un ami. Cependant, les résultats d'écoute étaient très prometteurs, même avant que la cage EMI soit assemblée ou que l'unité soit placée dans un châssis décent.
Donc, s'il y a de l'intérêt, j'ai pensé à l'ouvrir comme un petit achat groupé qui permettra un joli châssis personnalisé et des PCBs assemblés professionnellement, plus quelques petites corrections et changements. Si quelqu'un est intéressé, n'hésitez pas à me le faire savoir. Les coûts pour tout (carte assemblée et testée, châssis, assemblage, test, expédition etc.) sont difficiles à prévoir, mais si 10x sont commandés, je pense que cela peut être en dessous de 500EUR chacun et moins s'il y a une demande pour >10. Le but n'est pas de faire du profit mais plutôt de partager des idées et de permettre les avantages d'une plus grande production pour moi et mes amis.
Une photo de la face supérieure du prototype est montrée ci-dessous ; c'est avec la cage EMI non assemblée et sans châssis, mais autrement complété. Je m'excuse pour la qualité, le prototype est chez un ami maintenant et je ne peux pas encore prendre une meilleure photo
La plupart des composants à trous traversants, y compris les connecteurs Ethernet, sont de l'autre côté, et le grand dissipateur thermique sur le devant. J'ai ajouté quelques chiffres pour montrer les différentes parties :
1 - Marvell 5-port Gigabit switch
2 - Transformateurs Gigabit discrets
3 - Oscillateur de précision Crystek
4 - Régulateurs linéaires à faible bruit (7 au total)
5 - PHY Gigabit externe
6 - MCU de contrôle
7 - Commutateurs de limitation de vitesse du port 100Mbps
8 - Interrupteurs de désactivation du port
9 - LED rouge/verte sur le panneau avant
10 - Connecteur d'alimentation 12VDC, relié au panneau arrière du châssis par un câble court.
11 - Connecteurs coaxiaux u.fl vers les prises SMA externes (si utilisés)
12 - Dissipateur thermique pour le régulateur linéaire principal intégré
13 - Grille pour le montage de la cage EMI autour du switch
14 - Conditionnement de l'alimentation d'entrée, avec filtrage en mode commun et en mode différentiel, protection contre les transitoires et fusible.
15 - Régulateur de tension discret (la plus grande partie de la surface)
Sans citer d'autres interrupteurs, le mien suit une approche différente. Il semble que l'on insiste beaucoup sur l'isolation des signaux, mais ce qui n'est pas mentionné dans le discours marketing, c'est que cela se fait au prix d'une augmentation de la gigue. Sans citer d'autres conceptions, la mienne suit une approche différente. Il semble que l'on insiste beaucoup sur l'isolation des signaux, mais ce qui n'est pas mentionné dans le discours marketing, c'est que cela se fait au prix d'une augmentation de la gigue. J'ai décidé de chercher plutôt à minimiser toutes les sources d'interférences internes et à garder les alimentations et les horloges aussi pures et exemptes de bruit que possible, et à limiter la température aussi près que possible de la température ambiante où tous les circuits sont à leur point de fonctionnement optimal. J'ai également porté une attention quasi fanatique à l'emplacement des composants et au routage des signaux afin d'optimiser l'intégrité des signaux et la diaphonie.
L'isolation est en partie assurée par l'utilisation de transformateurs discrets (qui non seulement prennent beaucoup de place sur la carte mais coûtent aussi beaucoup plus cher) et peut être améliorée par une gestion intelligente de l'alimentation et du câblage.
Voici quelques-unes des principales caractéristiques :
- Un circuit intégré de commutation Ethernet Gigabit d'entreprise de Marvell. Celui-ci présente des capacités environnementales étendues et des émetteurs-récepteurs de haute qualité. PHY externe pour un port supplémentaire avec une liaison MAC RGMII.
- Transformateurs Ethernet discrets pour une meilleure isolation et moins de couplage de bruit parasite.
- Circuit imprimé multicouche pour exploiter la capacité du plan d'alimentation en faisant en sorte que le plan d'alimentation soit un condensateur RF.
- Horloge Crystek de haute précision et tampon de sortie d'horloge. Cela réduit la pression sur le circuit de récupération d'horloge en donnant moins de gigue.
- Cage de blindage EMI pour le commutateur Ethernet lui-même.
- Le commutateur est délibérément non géré pour réduire le bruit du processeur de contrôle, mais un MCU a été inclus pour deux fonctions : Force 100MBps et Disable Port. La première consiste à limiter la vitesse de la liaison à 100Mbps, ce qui réduit les vitesses d'horloge de 5x et donc les EMI. La seconde consiste à désactiver complètement les ports inutilisés, pour réduire une fois de plus les émissions et la consommation d'énergie. Il existe également un moyen d'éteindre les DEL Ethernet pour réduire les émissions de bruit puisque les DEL sont situées à la sortie. Le MCU ne communique avec le commutateur que pendant la mise sous tension, puis se met en veille pour réduire les interférences.
- Régulateurs linéaires pour tous les rails de tension, à l'exception de la tension du cœur du commutateur, qui a bénéficié d'un régulateur à commutation à double filtre. Régulateurs dédiés à faible bruit pour l'alimentation numérique générale, le rail analogique 1 du commutateur, le rail analogique 2 du commutateur, la PLL du commutateur, l'horloge, l'alimentation du MCU. Découplage avec plusieurs gammes de tantale céramique et polymère.
- Régulateur linéaire discret intégré pour le filtrage du 12V entrant de la prise barillet. Cela fait une très grande différence et permet de moins dépendre de la qualité de l'alimentation principale de 12V. Il a cependant besoin d'un dissipateur thermique important pour dissiper environ 5W sans chauffer l'électronique.
- De taille compacte 100x100mm, il peut être utilisé dans des profilés du commerce avec des nervures de connexion de masse sur le côté et un dissipateur thermique à l'avant pour le régulateur discret, mais je pense plutôt utiliser un chasiss en acier plié sur mesure.
- Le panneau avant basique indique la mise sous tension et tout est OK avec une LED bicolore. Le panneau arrière comporte les cinq prises Ethernet avec lien intégré, vitesse et LED d'activité (si activé) et une prise barillet 12V DC.
- 2 connexions externes SMA 50Ohm pour l'asservissement de l'horloge du commutateur à d'autres appareils en utilisant LVPECL. Dans mon cas, il sera connecté à un PCIe NIC personnalisé que je suis en train de développer. Je n'ai pas inclus les options d'entrée habituelles de 10MHz puisque je n'ai pas l'intention d'utiliser des horloges maîtresses externes.
Le but principal était de voir ce qui peut être fait et d'en construire un pour moi et un ami. Cependant, les résultats d'écoute étaient très prometteurs, même avant que la cage EMI soit assemblée ou que l'unité soit placée dans un châssis décent.
Donc, s'il y a de l'intérêt, j'ai pensé à l'ouvrir comme un petit achat groupé qui permettra un joli châssis personnalisé et des PCBs assemblés professionnellement, plus quelques petites corrections et changements. Si quelqu'un est intéressé, n'hésitez pas à me le faire savoir. Les coûts pour tout (carte assemblée et testée, châssis, assemblage, test, expédition etc.) sont difficiles à prévoir, mais si 10x sont commandés, je pense que cela peut être en dessous de 500EUR chacun et moins s'il y a une demande pour >10. Le but n'est pas de faire du profit mais plutôt de partager des idées et de permettre les avantages d'une plus grande production pour moi et mes amis.
Une photo de la face supérieure du prototype est montrée ci-dessous ; c'est avec la cage EMI non assemblée et sans châssis, mais autrement complété. Je m'excuse pour la qualité, le prototype est chez un ami maintenant et je ne peux pas encore prendre une meilleure photo
La plupart des composants à trous traversants, y compris les connecteurs Ethernet, sont de l'autre côté, et le grand dissipateur thermique sur le devant. J'ai ajouté quelques chiffres pour montrer les différentes parties :
1 - Marvell 5-port Gigabit switch
2 - Transformateurs Gigabit discrets
3 - Oscillateur de précision Crystek
4 - Régulateurs linéaires à faible bruit (7 au total)
5 - PHY Gigabit externe
6 - MCU de contrôle
7 - Commutateurs de limitation de vitesse du port 100Mbps
8 - Interrupteurs de désactivation du port
9 - LED rouge/verte sur le panneau avant
10 - Connecteur d'alimentation 12VDC, relié au panneau arrière du châssis par un câble court.
11 - Connecteurs coaxiaux u.fl vers les prises SMA externes (si utilisés)
12 - Dissipateur thermique pour le régulateur linéaire principal intégré
13 - Grille pour le montage de la cage EMI autour du switch
14 - Conditionnement de l'alimentation d'entrée, avec filtrage en mode commun et en mode différentiel, protection contre les transitoires et fusible.
15 - Régulateur de tension discret (la plus grande partie de la surface)
Enceintes: Odeon Tosca S
Amplificateur de puissance: DIY basé sur la classe D
Préamplificateur: Nuforce P20
DAC/DSP: DIY
Streamer: DIY
Câbles d'enceintes: vdH SCS-6
Interconnecteurs: XLO
Câbles d'alimentation: Iso-Tek
Amplificateur de puissance: DIY basé sur la classe D
Préamplificateur: Nuforce P20
DAC/DSP: DIY
Streamer: DIY
Câbles d'enceintes: vdH SCS-6
Interconnecteurs: XLO
Câbles d'alimentation: Iso-Tek