Bon je vais tenter une explication claire sans aucun schéma... Parce que sur les schémas présentés plus avant, il y a en plus confusion entre classe AB et écrêtage...
Globalement, pour faire un étage de sortie d'ampli il y a deux méthodes : Single ended (SE) ou push-pull (PP). On oublie les transistors en parallèle pour cette config ou l'autre pour pas s'encombrer de considération inutile.
- SE : un seul transistor
- PP : deux transistors.
Ça c'est la topologie.
Regardons maintenant la classe de fonctionnement :
- Classe A : tous les transistors de l'étage de sortie sont passant quel que soit le signal (dans le domaine d'utilisation bien-sûr !)
- Classe B : un seul transistor de l'étage de sortie est passant à un instant donné. Si l'un est passant, l'autre est bloqué
- Classe AB : les deux transistors sont passants à un moment donné, et à un autre moment un des deux transistors est bloqué.
Vous remarquerez que quand on parle de classe B ou AB on a toujours à un moment donné un transistor qui se bloque alors qu'on est dans la plage de fonctionnement normal de l'ampli. Ce qui sous-entend qu'il y a un autre transistor pour faire le boulot. Donc en classe B ou AB il y a forcément deux transistors. Autrement dit :
- un SE ne peut pas fonctionner en classe B ou un classe AB car il n'y a qu'un seul transistor, on ne pourrait donc pas avoir un transistor bloqué et un autre passant en même temps : donc fonctionnement en classe A par construction...
- un PP a deux transistors : il peut donc (en fonction de la conception) fonctionner en classe A, en classe B ou en classe AB.
Il y a deux manières de faire un push-pull :
- avec un point commun entre les deux branches du PP, la charge branchée entre ce point et la masse. C'est ce qu'on trouve dans beaucoup d'ampli PP à transistors (mais pas tous ), les amplis à tube OTL. Tel quel présenté habituellement sur un schéma on voit une symétrie verticale...
- sans point commun entre les deux branches du PP, la charge étant branchée entre la sortie de chaque branche, de manière direct ampli à transistor avec étage de sortie en pont...) ou au travers d'un transformateur (Ampli à tube PP, ampli à transistor et transformateur)
Pour toutes ces topologies d'étage de sortie, on peut les concevoir pour fonctionner en en A, B, et AB mais aussi en classe D ou d'autres encore...
Souvent, le mode de fonctionnement d'un PP est lié à la quantité de courant "fixe" qui passe dans le PP au repos (pas de signal audio). Mais on peut aussi définir un courant non fixe, dit adaptatif selon diverses "fonctions de transfert". Là, on obtient des technologies hybrides connues sous diverses appellations : classe A glissante, Super classe A, classe A quadratique, et bien d'autres.
En espérant avoir été simple dans mes explications.
Globalement, pour faire un étage de sortie d'ampli il y a deux méthodes : Single ended (SE) ou push-pull (PP). On oublie les transistors en parallèle pour cette config ou l'autre pour pas s'encombrer de considération inutile.
- SE : un seul transistor
- PP : deux transistors.
Ça c'est la topologie.
Regardons maintenant la classe de fonctionnement :
- Classe A : tous les transistors de l'étage de sortie sont passant quel que soit le signal (dans le domaine d'utilisation bien-sûr !)
- Classe B : un seul transistor de l'étage de sortie est passant à un instant donné. Si l'un est passant, l'autre est bloqué
- Classe AB : les deux transistors sont passants à un moment donné, et à un autre moment un des deux transistors est bloqué.
Vous remarquerez que quand on parle de classe B ou AB on a toujours à un moment donné un transistor qui se bloque alors qu'on est dans la plage de fonctionnement normal de l'ampli. Ce qui sous-entend qu'il y a un autre transistor pour faire le boulot. Donc en classe B ou AB il y a forcément deux transistors. Autrement dit :
- un SE ne peut pas fonctionner en classe B ou un classe AB car il n'y a qu'un seul transistor, on ne pourrait donc pas avoir un transistor bloqué et un autre passant en même temps : donc fonctionnement en classe A par construction...
- un PP a deux transistors : il peut donc (en fonction de la conception) fonctionner en classe A, en classe B ou en classe AB.
Il y a deux manières de faire un push-pull :
- avec un point commun entre les deux branches du PP, la charge branchée entre ce point et la masse. C'est ce qu'on trouve dans beaucoup d'ampli PP à transistors (mais pas tous ), les amplis à tube OTL. Tel quel présenté habituellement sur un schéma on voit une symétrie verticale...
- sans point commun entre les deux branches du PP, la charge étant branchée entre la sortie de chaque branche, de manière direct ampli à transistor avec étage de sortie en pont...) ou au travers d'un transformateur (Ampli à tube PP, ampli à transistor et transformateur)
Pour toutes ces topologies d'étage de sortie, on peut les concevoir pour fonctionner en en A, B, et AB mais aussi en classe D ou d'autres encore...
Souvent, le mode de fonctionnement d'un PP est lié à la quantité de courant "fixe" qui passe dans le PP au repos (pas de signal audio). Mais on peut aussi définir un courant non fixe, dit adaptatif selon diverses "fonctions de transfert". Là, on obtient des technologies hybrides connues sous diverses appellations : classe A glissante, Super classe A, classe A quadratique, et bien d'autres.
En espérant avoir été simple dans mes explications.
contact@reddoaudio.com