Bonsoir,
Alors après des heures et des heures passées sur la conception du circuit j'ai enfin un schéma qui couvre les besoins que je m'étais fixés au départ. Le but était de faire un circuit avec un minimum d'étages qui soit différentiel en entrée et qui sorte en asymétrique. Pour rappel, ne pas confondre entrée différentiel et entrée symétrique qui n'a rien à voir. Là on reste sur deux fils donc en asymétrique.
La structure du circuit de préampli est :
C'est un circuit à deux étages. Le premier étage est un amplificateur à transconductance (conversion V to I) comme souvent sur les amplis. Mais là il fonctionne en boucle ouverte. Il est attaqué en mode différentiel par Vin qui est la différence entre le point chaud et la masse de la source connectée à l'entrée (et surtout pas la masse du préampli). C'est optimisé pour traiter des signaux d'entrée jusque au moins 3V. L'entrée est à très haute impédance : aucun courant de défaut ne passe dans le circuit. La sortie de cet étage est signle-ended en courant.
Ensuite on a le potentiomètre de volume qui traite donc non pas un signal en tension mais en courant. J'y reviens après.
Pour finir on a un second étage qui est un double amplificateur transimpédance (conversion I to V). C'est un double étage en parallèle à cause du potentiomètre de volume. Le potentiomètre de volume voit ses deux connexions terminales au même potentiel. L'entrée est le curseur du milieu. Le potard splitte alors le courant en deux branches. Celle du haut pilote la tension de sortie qui est V = A I. Le courant dans l'autre branche est pour ainsi dire inutilisé. En fonction de la position du curseur on a donc plus ou moins de courant dans l'étage de conversion. Contrairement aux habituels gestion de volume en tension, ici, on travaille en courant : le potard doit avoir une valeur faible. J'ai choisi 220 Ohm. Très bien pour le bruit. L'étage de conversion possède une contre réaction locale et il est insensible à la charge. La distorsion de l'étage seul est noyée dans le bruit de fond (Disto de 0.000005% à la simulation).
L'étage de sortie est référencé à la masse locale. C'est le convoyage du signal sous forme d'un courant qui permet de passer d'une tension différentielle vers un signal référencé à la masse sortante.
Au final, d'après les premières simulations, le circuit tourne à environ 0.001% de disto ou moins sur toute la bande audio. La CMRR est basse : très important pour cette application.
Voilà c'est tout pour l'instant. Évidement le schéma actuel est bien plus compliqué (une bonne vingtaine de transistors en tout genre) mais le trajet reste très court. La suite avec les mesures et des tests sous toutes les coutures avant de passer PCB.
Jacques