Le buffer full différentiel de l'ampli :
C'est un étage en pont autour de deux transistors (Q21 et Q28) dont chaque courant Ic a été multiplié par 10 avec un miroir de courant à 10 sorties en parallèle. Ca revient à faire voir à chacun des transistors une charge divisée par 10.
Une 11ème sortie sur chaque miroir de courant permet de piloter le courant de bias via deux autres miroirs / multiplicateurs en bas du schéma.
Il faut retenir que sur un étage en pont, le courant passe du haut à gauche dans la charge puis finit en bas à droite, et vice et versa. On doit donc avoir un courant en bas à droite au moins égal à celui qui passe en haut à gauche (toujours et vice et versa). Si on s'arrange pour avoir l'égalité on est en classe AB car tout le courant qui passe en bas à droite vient d'en haut à gauche et donc il n'y a aucun courant en haut à droite : blocage. Mais si on s'arrange pour avoir un courant en bas supérieur on tire aussi du courant de l'autre branche (qui ne bloque pas). Maintenant, si on regarde les deux sources de courant en haut on voit qu'elles sont couplées en mode différentiel (le milieu du schéma). Une résistance pontant le différentiel permet de fixer le gain en courant. Et c'est là que c'est intéressant : quand les courants sont égaux de chaque coté (pas de courant dans la charge) on a un courant de bias au repos faible. Mais si un courant passe dans la charge on déséquilibre le différentiel. Celui qui fournit le courant dans la charge se retrouve amplifiés en bas de l'autre coté. Le facteur d'amplification est supérieur à 1. Plus le courant est élevé, plus la différence est grande et moins il y a de courant dans l'autre branche.
Voilà ce que cela donne au final pour les courants des deux transistors du pont.
Sur petit signaux :
Les courbes du bas sont le courants dans chaque transistor. Plus l'un fournit, moins l'autre fournit mais il y a un effet de compression dans la diminution de l'un quand il y a un effet d’expansion dans l'augmentation de l'autre (une sorte de classe A quadratique). L'alim ne fournit un courant important que sur les forts signaux et aucun des deux transistors ne bloque : classe A adaptative !
Sur grands signaux : la compression et l’expansion sont encore plus importes. Ca ressemble à de la classe AB mais c'est de la classe A. Ca peut fonctionner comme jusque 200W crête environ.
Maintenant comment ca sonne ? on verra bien vu que j'en sais rien
C'est un étage en pont autour de deux transistors (Q21 et Q28) dont chaque courant Ic a été multiplié par 10 avec un miroir de courant à 10 sorties en parallèle. Ca revient à faire voir à chacun des transistors une charge divisée par 10.
Une 11ème sortie sur chaque miroir de courant permet de piloter le courant de bias via deux autres miroirs / multiplicateurs en bas du schéma.
Il faut retenir que sur un étage en pont, le courant passe du haut à gauche dans la charge puis finit en bas à droite, et vice et versa. On doit donc avoir un courant en bas à droite au moins égal à celui qui passe en haut à gauche (toujours et vice et versa). Si on s'arrange pour avoir l'égalité on est en classe AB car tout le courant qui passe en bas à droite vient d'en haut à gauche et donc il n'y a aucun courant en haut à droite : blocage. Mais si on s'arrange pour avoir un courant en bas supérieur on tire aussi du courant de l'autre branche (qui ne bloque pas). Maintenant, si on regarde les deux sources de courant en haut on voit qu'elles sont couplées en mode différentiel (le milieu du schéma). Une résistance pontant le différentiel permet de fixer le gain en courant. Et c'est là que c'est intéressant : quand les courants sont égaux de chaque coté (pas de courant dans la charge) on a un courant de bias au repos faible. Mais si un courant passe dans la charge on déséquilibre le différentiel. Celui qui fournit le courant dans la charge se retrouve amplifiés en bas de l'autre coté. Le facteur d'amplification est supérieur à 1. Plus le courant est élevé, plus la différence est grande et moins il y a de courant dans l'autre branche.
Voilà ce que cela donne au final pour les courants des deux transistors du pont.
Sur petit signaux :
Les courbes du bas sont le courants dans chaque transistor. Plus l'un fournit, moins l'autre fournit mais il y a un effet de compression dans la diminution de l'un quand il y a un effet d’expansion dans l'augmentation de l'autre (une sorte de classe A quadratique). L'alim ne fournit un courant important que sur les forts signaux et aucun des deux transistors ne bloque : classe A adaptative !
Sur grands signaux : la compression et l’expansion sont encore plus importes. Ca ressemble à de la classe AB mais c'est de la classe A. Ca peut fonctionner comme jusque 200W crête environ.
Maintenant comment ca sonne ? on verra bien vu que j'en sais rien
contact@reddoaudio.com