Pour commencer sur les principes appliqués sur ce projet...
Le transistors et ses défauts
Le transistor a fait l’objet d’innombrables études et perfectionnements. Il s’est imposé dans tous les domaines de l’électronique. Toutefois, même après plus d’un demi-siècle d’existence, il demeure toujours un composant imparfait. Les principales lacunes du transistor sont la variation du gain en fonction de sa polarisation instantanée, ses capacités parasites et sa dérive thermique.
La variation de gain du transistor en fonction de la polarisation instantanée est une cause importante de distorsion dès que celui-ci est utilisé dans le monde de l’analogique.
Les capacités parasites sont très pernicieuses et provoquent plusieurs défauts de fonctionnement du circuit global. Le premier défaut bien connu est le comportement en fréquence non-uniforme amenant coupure de bande et problèmes de stabilité dans les systèmes bouclés. Un autre défaut, bien plus sournois, est son impact négatif sur la distorsion du circuit. Il est important de noter qu’une capacité parasite au sein du transistor n’est jamais fixe et dépend de la polarisation et certainement de la température de la puce. Ceci en fait un condensateur de piètre qualité induisant des distorsions en sortie de tout étage utilisant le transistor. Mais la capacité parasite entraine aussi des problèmes en amont : la distorsion induite à l’entrée du circuit. La capacité parasite, variable, est traversée par un courant peu corrélé au signal. Ce courant se transforme en tension parasite en modulant sur l’impédance de sortie du circuit attaquant le transistor. Plus l’impédance en amont est grande, plus la distorsion est élevée. Pour illustrer ce phénomène, La figure suivante présente une simulation d’un montage préamplificateur ultra simple et la distorsion mesurée à l’entrée du montage et à la sortie. Ce circuit, simple suiveur en classe A, est attaqué par un signal de 2Veff au travers un potentiomètre de 47K à mi-course
On constate que la distorsion en entrée et en sortie est la même. Autrement dit, c’est essentiellement la distorsion à l’entrée qui fixe les performances du circuit. C'est une simulation et on imagine facilement que dans le monde réel la distorsion est encore plus importante. Quand on connaît la valeur des capacités parasites du très bon FET petit-signaux utilisé ici, on peut imaginer ce que peut introduire un câble de liaison avec une capacitance cent fois supérieure, tout aussi variable et microphonique sur la sortie d’un préampli passif. Phénomène bien plus intéressant à étudier qu’une simple analyse dans le domaine fréquentiel…
La dérive thermique des transistors est un autre problème. il suffit de consulter le datasheet du composant pour ce rendre compte que la dérive thermique est bien présente au sein de tout type de transistor et particulièrement les transistors unipolaire pour lesquels les courbes de Vgs montre une dépendance à la température très importante. On peut noter qu’une variation de température de la puce va non seulement modifier le Vbe/Vgs mais certainement toute la fonction de transfert du transistor puisque le gain est lui-même relié à ce paramètre.
La variation thermique de la puce est liée à la température ambiante autour du composant mais aussi et surtout à la dissipation de puissance du transistor. Cette dernière contribution est difficile à modéliser car elle fait intervenir autant la structure interne de la puce, la capacité thermique du substrat, la forme du signal « dissipation ». Toutefois, il est aisé d’imaginer que la combinaison de ces multiples facteurs fait que la tension Vbe/Vgs et le gain fluctue au sein du transistor selon de multiples constantes de temps combinées dont au moins une est dans la bande audio puisque la principale contribution au phénomène concerne la dissipation de puissance instantanée, elle-même en relation avec le signal audio.
Pour faire face à ces imperfections du transistor, il y a deux méthodes :
- la première consiste à empiler plusieurs étages à transistors pour avoir un grand gain en boucle ouverte puis à appliquer une contre-réaction. Traitement réalisé localement, globalement, ou les deux en combinaison. Cette méthode est certainement utilisée dans plus de 99% des réalisations ;
- la seconde méthode consiste à neutraliser au mieux les défauts du transistor directement au niveau du composant en jouant sur sa polarisation.
C'est la seconde méthode qui est visée dans ce projet. Elle ne nécessite pas d'empiler des étages de gains. On peut donc partir sur une topologie d'amplification minimaliste : un seul étage tout en gardant des objectifs de performance très élevés.
Le transistors et ses défauts
Le transistor a fait l’objet d’innombrables études et perfectionnements. Il s’est imposé dans tous les domaines de l’électronique. Toutefois, même après plus d’un demi-siècle d’existence, il demeure toujours un composant imparfait. Les principales lacunes du transistor sont la variation du gain en fonction de sa polarisation instantanée, ses capacités parasites et sa dérive thermique.
La variation de gain du transistor en fonction de la polarisation instantanée est une cause importante de distorsion dès que celui-ci est utilisé dans le monde de l’analogique.
Les capacités parasites sont très pernicieuses et provoquent plusieurs défauts de fonctionnement du circuit global. Le premier défaut bien connu est le comportement en fréquence non-uniforme amenant coupure de bande et problèmes de stabilité dans les systèmes bouclés. Un autre défaut, bien plus sournois, est son impact négatif sur la distorsion du circuit. Il est important de noter qu’une capacité parasite au sein du transistor n’est jamais fixe et dépend de la polarisation et certainement de la température de la puce. Ceci en fait un condensateur de piètre qualité induisant des distorsions en sortie de tout étage utilisant le transistor. Mais la capacité parasite entraine aussi des problèmes en amont : la distorsion induite à l’entrée du circuit. La capacité parasite, variable, est traversée par un courant peu corrélé au signal. Ce courant se transforme en tension parasite en modulant sur l’impédance de sortie du circuit attaquant le transistor. Plus l’impédance en amont est grande, plus la distorsion est élevée. Pour illustrer ce phénomène, La figure suivante présente une simulation d’un montage préamplificateur ultra simple et la distorsion mesurée à l’entrée du montage et à la sortie. Ce circuit, simple suiveur en classe A, est attaqué par un signal de 2Veff au travers un potentiomètre de 47K à mi-course
On constate que la distorsion en entrée et en sortie est la même. Autrement dit, c’est essentiellement la distorsion à l’entrée qui fixe les performances du circuit. C'est une simulation et on imagine facilement que dans le monde réel la distorsion est encore plus importante. Quand on connaît la valeur des capacités parasites du très bon FET petit-signaux utilisé ici, on peut imaginer ce que peut introduire un câble de liaison avec une capacitance cent fois supérieure, tout aussi variable et microphonique sur la sortie d’un préampli passif. Phénomène bien plus intéressant à étudier qu’une simple analyse dans le domaine fréquentiel…
La dérive thermique des transistors est un autre problème. il suffit de consulter le datasheet du composant pour ce rendre compte que la dérive thermique est bien présente au sein de tout type de transistor et particulièrement les transistors unipolaire pour lesquels les courbes de Vgs montre une dépendance à la température très importante. On peut noter qu’une variation de température de la puce va non seulement modifier le Vbe/Vgs mais certainement toute la fonction de transfert du transistor puisque le gain est lui-même relié à ce paramètre.
La variation thermique de la puce est liée à la température ambiante autour du composant mais aussi et surtout à la dissipation de puissance du transistor. Cette dernière contribution est difficile à modéliser car elle fait intervenir autant la structure interne de la puce, la capacité thermique du substrat, la forme du signal « dissipation ». Toutefois, il est aisé d’imaginer que la combinaison de ces multiples facteurs fait que la tension Vbe/Vgs et le gain fluctue au sein du transistor selon de multiples constantes de temps combinées dont au moins une est dans la bande audio puisque la principale contribution au phénomène concerne la dissipation de puissance instantanée, elle-même en relation avec le signal audio.
Pour faire face à ces imperfections du transistor, il y a deux méthodes :
- la première consiste à empiler plusieurs étages à transistors pour avoir un grand gain en boucle ouverte puis à appliquer une contre-réaction. Traitement réalisé localement, globalement, ou les deux en combinaison. Cette méthode est certainement utilisée dans plus de 99% des réalisations ;
- la seconde méthode consiste à neutraliser au mieux les défauts du transistor directement au niveau du composant en jouant sur sa polarisation.
C'est la seconde méthode qui est visée dans ce projet. Elle ne nécessite pas d'empiler des étages de gains. On peut donc partir sur une topologie d'amplification minimaliste : un seul étage tout en gardant des objectifs de performance très élevés.
contact@reddoaudio.com